Molecular-like hierarchical self-assembly of monolayers of mixtures of particles
نویسندگان
چکیده
We present a technique that uses an externally applied electric field to self-assemble monolayers of mixtures of particles into molecular-like hierarchical arrangements on fluid-liquid interfaces. The arrangements consist of composite particles (analogous to molecules) which are arranged in a pattern. The structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizabilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles form a ring around it. The number of particles in the ring and the spacing between the composite particles depend on their polarizabilities and the electric field intensity. Approximately same sized particles form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate.
منابع مشابه
Synthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer
Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...
متن کاملSelf-assembly of like-charged nanoparticles into microscopic crystals.
Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydr...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملDepletion forces drive polymer-like self-assembly in vibrofluidized granular materials.
Ranging from nano- to granular-scales, control of particle assembly can be achieved by limiting the available free space, for example by increasing the concentration of particles ("crowding") or through their restriction to 2D environments. It is unclear, however, if self-assembly principles governing thermally-equilibrated molecules can also apply to mechanically-excited macroscopic particles ...
متن کاملOptimal control of electrostatic self-assembly of binary monolayers
A simple macroscopic model is used to determine an optimal annealing schedule for self-assembly of binary monolayers of spherical particles. The model assumes that a single rate-controlling mechanism is responsible for the formation of spatially ordered structures and that its rate follows an Arrhenius form. The optimal schedule is derived in an analytical form using classical optimization meth...
متن کامل